Section 4.1 Graphing Linear Equations in One Variable

Example: Write the equations of the horizontal line and the vertical line that pass through the point (2, 1).

The x-coordinate of (2, 1) is 2. Because all of the points on the vertical line with (2, 1) will also have an x-coordinate of 2, the equation of the vertical line is x = 2. The y-coordinate of (2, 1) is 1. Because all of the points on the horizontal line with (2, 1) will also have a y-coordinate of 1, the equation of the horizontal line is v = 1.

Answer: The horizontal line is y=1 and the vertical line is x=2.

Example: Sketch the graph of the line x = -3 labeling three points.

The line x = -3 is the set of all points that have x-coordinates of -3. Pick three such points. Examples could be (-3, 3), (-3, 0), and (-3, -3). When connected, these three points will form a vertical line.

Answer:

Example:

Sketch the graph of the line y = 5 labeling three points.

The line y = 5 is the set of all points that have y-coordinates of 5. Pick three such points. Examples could be (-2, 5), (0, 5), and (3, 5). When connected, these three points will form a horizontal line.

Answer:

Practice

Write the equations of the horizontal and vertical lines through the given point.

1. (-3, 4)2. (0, -1)3. (-4, -2)

$$(0,-1)$$

Horizontal Line: <u>y=4</u> Horizontal Line: <u>y=-1</u> Horizontal Line: <u>y=-2</u>

Vertical Line: Vertical Line:

Use a ruler and sketch the graph of the following lines labeling three points each.

4.
$$y = 2$$

Domain	Range	Solution
Λ.	4=5	14.90
- à	2	(-2,2)
0	2	(0,2)
2	2	(2 2)

5.
$$x = -1$$

Domois	Ronge	Solution
1/ = -1	9	(4,9)
-1	-2	(-1,-2)
1	0	(-1,0)
= 1	2	(-1,2)

6.
$$y = -3$$

Domain	Rame	Solution
/ X	y= -3	(x,3)
- 2	-3	(-2, 3)
O	-3	(0,-3)
2	3	(23-3)
	13	
£ +	+ + + +	+-+-> N

$$(-2,3)$$
 $(-3,3)$ $y=-3$

Section 4.2 Graphing Linear Equations in Two Variables Using a Table

Procedure: 1. Solve the equation for y.

2. Make a table of three x-values.

3. Plot and label.

Example: Graph the equation 6x - 2y = 4.

Solution: 1. Solve for the equation for y.

$$6x-2y=4$$

$$-2y = -6x + 4$$

$$y=3x-2$$

2. Make a table of three x-values. (Pick values around the origin.)

Domain	Range	Solution
x	y = 3x - 2	(x, y)
-1	y = 3(-1)-2 $y = -3-2$ $y = -5$	(-1, -5)
0	y = 3(0) - 2 $y = 0 - 2$ $y = -2$	(0, -2)
2	y = 3(2) - 2 $y = 6 - 2$ $y = 4$	(2, 4)

3. Plot and label.

Practice for 4.2 Use a table of values to graph each equation. Follow the three steps.

1.
$$4x + y = 1$$

$$y = -4x + 1$$

Domain	Range	Solution
x	$y = -q_{\chi} + 1$	(x, y)
-1	y = -4(-1)+1 $y = 4+1$ $y = 5$	(-1,5)
0	y = -4(0) + 1 y = 0 + 1 y = 1	(0,1)
ŀ	y = -4(1) + 1 y = -4 + 1 y = -3	(1,-3)

2.
$$9x-3y=12$$

$$-3y=-9x+12$$

$$y=3x+(-4)$$

	y= 3 x 7(-7)	
Domain	Range	Solution
x	y = 3x + (-4)	(x,y)
-1	y = 3(-1) + (-4) y = -3 + (-4) y = -7	(-1,-7)
0	y = 3(0) + (-4) y = 0 + (-4) y = -4	(0, -4)
	y = 3(1) + (-4) y = 3 + (-4) y = -1	(1,-1)

3.
$$-4x+2y=2$$

$$3y=4x+3$$

$$y=3x+1$$

Domain	Range	Solution
x	y=2x+1	(x,y)
-2	$y = \lambda(-2) + 1$ y = -4 + 1 y = -3	(-2,-3)
0	y = 2(0) + 1 y = 0 + 1 y = 1	(0,1)
2	y = a(a) + 1 y = 4 + 1 y = 5	(2,5)

4. 5x-5y=15 -5y=-5x+15y=x+(-3)

Domain	Range y= x + (-3)	(x,y)
-2	y = -2 + (-3) y = -5	(-2,-5)
0	y = 0 + (-3) y = -3	(0,-3)
3	y=3+(-3) y=0	(3,0)

Section 4.3 Using Intercepts to Sketch the Graph of a Linear Equation

Example: Sketch the graph of 2x+3y=6 using intercepts.

The x-intercept is the point where the line crosses the x-axis. Every point on the x-axis has a y-coordinate of 0. Substitute y = 0 into the original equation to find the x-intercept.

$$2x + 3(0) = 6$$

 $2x = 6$ The x-intercept is (3, 0).
 $x = 3$

The y-intercept is the point where the line crosses the y-axis. Every point on the y-axis has an x-coordinate of 0. Substitute x = 0 into the original equation to find the y-intercept.

$$2(0) + 3y = 6$$

$$3y = 6$$
The y-intercept is (0, 2).
$$y = 2$$

Plot and label.

Example:

Sketch the graph of -x+3y=9 using intercepts.

$$-x+3(0)=9$$

$$-(0) + 3y = 9$$

$$-x = 9$$

$$3y = 9$$

$$x = -9$$

$$y = 3$$

The x-intercept is (-9, 0) and the y-intercept is (0, 3)

Practice for 4.3 Use intercepts to sketch the graphs of each linear equation.

1.
$$-2x+3y=-6$$

2.
$$2x + y = -4$$

$$x-int: y=0$$
 $y-int: x=0$ $2x=-4$ $y=-4$ $(0,-4)$

3.
$$x+2y=-8$$

$$\chi = 0$$
 $\chi = 0$ $\chi =$

4.
$$3x-4y=12$$

$$X = 12$$
 $Y = 14 : X = 0$
 $3x = 12$ $Y = 12$
 $Y = 4$ $Y = -3$
 $(4,0)$ $(0,-3)$

5. -6x+4y=24

$$X=int$$
: $y=0$ $y=int$: $X=0$
 $-6x=24$ $4y=24$
 $X=-4$ $y=6$
 $(-4,0)$ $(0,6)$

6. 5x-6y=30

Section 4.4 Finding the Slope of a Line Using Two Points

Ideas: A line with positive slope rises from left to right. (Increasing Line)

A line with negative slope falls from left to right. (Decreasing Line) A line with a zero slope does not change left to right. (Horizontal)

A line with an undefined slope does not go left to right. (Vertical)

Formula: The slope of the line between two points can be calculated using the following formula.

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Example: Find the slope of the line passing through the points (2, 1) and (4, 5).

Describe the line as increasing, decreasing, horizontal, or vertical.

Solution: Let (2,1) be point 1 and (4,5) be point 2.

$$m = \frac{\Delta y}{\Delta x} = \frac{5-1}{4-2} = \frac{4}{2} = 2$$

m=2 The line is increasing.

Example: Find the slope of the line passing through the points (3, 3) and (3, -1).

Describe the line as increasing, decreasing, horizontal, or vertical.

Solution: Let (3, 3) be point 1 and (3, -1) be point 2.

$$m = \frac{\Delta y}{\Delta x} = \frac{-1-3}{3-3} = \frac{-4}{0}$$

Slope is undefined. The line is vertical.

Example: Find the slope of the line passing through the points (2, -4) and (5, -4).

Describe the line as increasing, decreasing, horizontal, or vertical.

Solution: Let (2, -4) be point 1 and (5, -4) be point 2.

$$m = \frac{\Delta y}{\Delta x} = \frac{-4 - (-4)}{5 - 2} = \frac{0}{3} = 0$$

m = 0 The line is horizontal.

Practice for 4.4

- A. Find the slope of the line passing through the given points.
- B. Describe the line as increasing, decreasing, horizontal, or vertical.

1. (2, 3) and (4, 5)
$$_{II}$$

 $M = \frac{\Delta y}{\Delta y} = \frac{5-3}{4-3} = \frac{2}{3}$

2.
$$(-2, 5)$$
 and $(2, -3)_{\text{TL}}$

$$M = \frac{Ay}{Ax} = \frac{-3-5}{2-(-2)}$$

$$m = -\frac{8}{4}$$

3.
$$(3, 4)$$
 and $(4, 4)$

$$M = \frac{\Delta y}{\Delta x} = \frac{4-4}{4-3}$$

4.
$$(-7, 10)$$
 and $(3, 0)$

$$M = \frac{\Delta y}{\Delta x} = \frac{0-10}{3-(-7)}$$

$$m = \frac{-10}{16}$$

5.
$$(0, 4)$$
 and $(0, -4)$

$$M = \frac{\Delta y}{\Delta x} = \frac{-4-4}{0-0}$$

$$M = \frac{-8}{0}$$

6.
$$(2, -5)$$
 and $(0, -4)$

$$M = \frac{\Delta y}{\Delta x} = \frac{-4 - (-5)}{0 - 2}$$

$$m = \frac{1}{-\lambda}$$

7.
$$(9, 10)$$
 and $(-5, 38)$

$$M = \frac{\Delta y}{\Delta x} = \frac{38-10}{-5-9}$$

$$m = \frac{28}{-14}$$

8.
$$(-3, -2)$$
 and $(3, -2)$

$$M = \frac{\Delta y}{\Delta x} = \frac{-2 - (-2)}{3 - (-3)}$$

$$M = \frac{0}{6}$$

M=07 Horzontal Line

Section 4.5 Graphing Using Slope-Intercept Form

Ideas:

1. Write y as a function of x.

y = mx + b

m is the slope of the line. b is the y-coordinate of the y-intercept. (0, b)

2. Plot the y-intercept and use the slope to get 2 other points.

3. Completely label your graph.

Example:

Graph
$$-x + 2y = 8$$
.

$$2y = x + 8$$

$$y = \frac{1}{2}x + 4$$

The slope is $\frac{1}{2}$ and the y-intercept is (0, 4).

Practice for 4.5. Graph each equation using the slope and y-intercept.

1.
$$3x+4y=-16$$

 $4y=-3x+(-16)$
 $y=\frac{-3}{4}x+(-4)$
 $M=-\frac{3}{4}=\frac{\Delta y}{\Delta x}=\frac{-3}{4}=\frac{3}{-4}$
 $y-in+$; $(0,-4)$

2.
$$2x+3y=9$$

 $3y=-2x+9$
 $y=-\frac{2}{3}x+3$
 $M=-\frac{2}{3}=\frac{4}{4x}=\frac{-2}{3}=\frac{2}{-3}$
 $y-in+:(0,3)$

3.
$$4x - 5y = -10$$

$$-5y = -4x + (-10)$$

$$y = \frac{4}{5}x + 2$$

$$m = \frac{4}{5} = \frac{4y}{4x} = \frac{-4}{5}$$

$$y - int : (0,2)$$

4.
$$-6x - 2y = 4$$

$$-2y = 6x + 4$$

$$y = -3x + (-2)$$

$$m = -3 = \frac{\Delta y}{\Delta x} = \frac{-3}{1} = \frac{3}{-1}$$

$$y - n + i(0_{3} - 2)$$

